New Solid Amine Sorbents

- M. L. Gray¹, K. J. Champagne¹, Y. Soong¹, J. Baltrus¹,
- H. Pennline¹, R. W. Stevens, Jr. ², R. Khatri²,
- S. S. C.Chang², and S. Khan³
- ¹National Energy Technology Laboratory
- ²Univerisity of Akron
- ³Duquesne University

Carbon Sequestration Meeting - May 2003

Overview

Goals

-To develop a cost efficient process for the capture of CO₂.

Objective

-To develop low-cost solid sorbents for the capture of CO₂ from flue gas streams

Technical Challenges

- To reduce the energy intensity of current capture processes (e.g., MEA process)
- -To improve the capture capacity of sorbents
- -To produce affordable solid sorbents for the capture of CO₂
- -To improve the mass and heat transfer parameters
- To increase the available contact surface
- -To reduce the corrosion problems

Chemical Treatments

Oxidized Surface

Amine Enriched Surface

Potential Applications

- Fossil-fuel power generation plants contribute about 1/3 of anthropogenic CO₂ emissions
- Power generation point sources
 - Pulverized coal combustion plants
 - Advanced power system
- Capture step
 - Post-combustion
 - Pre-combustion
- Storage step in carbon sequestration requires concentrated CO₂
- Natural gas clean up and Life support systems

Typical Chemical Stripping Process

$$C_2H_4OHNH_2 + CO_2 + H_2O < Cold + H_2O < C_2H_4OHNH_3 + H_2O_3$$
Hot

Typical adsorption process is determined by the available gas/liquid interaction surface. Therefore, a large amount of liquid is needed for capture a small amount of gas.

Energy intensive

Proposed Reaction Sequence

Hook, R. J., Ind. Eng. Chem. Res., 1997, 36, 1779 -1790

carbamate

 CH_2)_X NH_3 ⁺ HCO_3 ⁻

bicarbonate

Amine Treatment of Solid Substrates in Aqueous Media

US Patent 6,547,854 - 4/15/2003

Experimental TPD/FTIR Procedure

- 15 mg in FTIR and 115 mg in TPD reactor
- Outgas in He for 4 hrs.
- Ambient T, 10 % CO₂ in/He
- Ambient T, switch to CO₂/H₂OHe
- Ambient T, switch to H₂O/He to remove CO₂
- TPD, 10 °C/min. to 60 or 120 °C and hold for 30 min. in He

Initial Results

- Modified fly ash derived carbon with 10⁻³ M of 3-chloropropylamine HCL (CPAH) and 10⁻¹ M KOH
 - 95 Fly ash carbon concentrate
 - -95A CPAH and KOH
 - -95B KOH only
 - -95C CPAH only
- Tested prepared samples
 - In-situ FTIR (DRIFT) to observe the surface absorption and adsorption/desorption states
 - -TPD with on-line MS to monitor the desorbed gases

Samples Desorbed amount \(\mu mol/g \) sample

95 24

95A 81

95B 3-chloropropylamine hydrochloride

95C 174

95C (regenerated) 140

Proposed Species

Potential Adsorption of CO₂ onto a Solid Surface

Monodentate carbonate Bidentate carbonate Bridged bidentate carbonate

$$1530 - 1470 \text{ (vas COO}^{-}\text{)} \quad 1530 - 1620 \text{ (v C=O)} \quad 1620 - 1670 \text{ (v C=O)} \\ 1300 - 1370 \text{ (vs COO}^{-}\text{)} \quad 1270 - 1250 \text{ (vas COO)} \quad 1220 - 1270 \text{ (vas COO)} \\ 1080 - 1040 \text{ (v CO)} \quad 1030 - 1020 \text{ (vs COO)} \quad 980 - 1020 \text{ (vs COO)}$$

A.C.C.Chang, et al. "In-Situ Infrared Study of CO₂ Adsortion on SBA-15 Grafted with

γ-Aimniopropyltriethoxy silane" Energy & Fuel, 17, pp. 468-73, 2003.

Adsorption profile of CO₂/H₂O over 95C

TPD profile over 95C

6/4/1.

Figure 8

Activated Carbon Performance in CO₂/He/H₂O

μmol/CO2 Captured
ſ

Carbon feed 925.7

Carbon + OX 455.1

Carbon + OX + CPAH 1262.6

Carbon + OX + CPAH 1021.7

1st Regeneration

Carbon + OX + CPAH 534.3

2nd Regeneration

Preparation of the Silicon based Sorbent SBA-15 in Organic Media

XPS Analysis of SBA-15 Sorbent

- SBA-15 Amine Sorbent.
- Nitrogen Content= 7.13%
- Surface area = 227 m2/g

XPS Analysis of the Industrial Amine Solid Sorbent

- Industrial Amine Solid Sorbent.
- Nitrogen content= 17.73%
- Surface area = 213 m2/g

Comparison of SBA-15 to Industrial Amine Solid Sorbent (IAS)

Sorbent	μmol/g CO ₂ Captured	XPS % Nitrogen
SBA-15 fresh	2011.4	7.13
SBA-15 1 st regeneration	1908.5	NA
SBA –15 2 nd regeneration	1748.3	NA
IAS fresh	1603.9	17.73
IAS 1 st regeneration	1922.6	NA
IAS 2 nd regeneration	1528.1	NA

Summary of Sorbents Performance in CO₂/He/H₂O

Sorbent	Treatment	μ mol/CO 2	Surface
		Captured	Area m ² /g
Fly ash	Aqueous	157.2	27
Carbon	CPAH		
Carbon	Aqueous	939.5	1010
Ox + Am	CPAH		
TiO	Aqueous	1057.2	210
	Media		
SBA-15	Organic	1889.4	227
	Silicate		
IAS	Immobilized	1820.8	213

Conclusions

- Demonstration of the implantation of amine groups on various substrates using both aqueous and organic reaction systems.
- Aqueous 3-chloropropylamine HCL reaction system requires addition investigation to improve its performance (fly ash carbon and activated carbon).
- Organic silicate reaction system produced a sorbent (SBA-15) with similar performance to the industrial amine solid (IAS) sorbent.

